Investigadores de la Universidad de Cádiz han identificado un microorganismo que fermenta a temperaturas inferiores a las habituales. Se ha detectado por primera vez en las fermentaciones de la región vinícola de Ribera del Duero, por lo que se puede aplicar a los aromas de sus vinos. El proceso afecta a la producción de ciertos compuestos relacionados con el aroma y abre la puerta a la elaboración de vinos a la carta.
Investigadores del Centro Andaluz de Investigaciones Vitivinícolas (CAIV) de la Universidad de Cádiz, en colaboración con la Universidad de Cambridge (Reino Unido), han identificado una levadura que es capaz de fermentar el vino tinto a baja temperatura, es decir, por debajo de los 20 grados, un valor inferior a lo habitual, situado alrededor de los 25 grados.
Según los expertos, este microorganismo se ha detectado por primera vez en el proceso de fermentación espontánea en la región vinícola de Ribera del Duero y resulta clave para la producción de compuestos aromáticos que confieren identidad a los caldos de la zona. La investigación, además, abre la puerta a la elaboración de vinos a la carta mediante el uso de levaduras autóctonas en fermentaciones dirigidas.
La región de Ribera del Duero se considera de clima cálido, en términos vinícolas. En estas zonas, las levaduras, organismos responsables de convertir el azúcar del zumo en alcohol, fermentan a temperaturas cercanas a los 25 grados.
Sin embargo, los investigadores gaditanos han constatado que una variedad de estos microorganismos tiene capacidad para fermentar a temperaturas inferiores, entre los 13 y los 17 grados, propias de zonas vinícolas frías, como Nueva Zelanda, Chile o países centroeuropeos.
“Hemos comprobado que una levadura autóctona, Saccharomyces bayanus var uvarum, que se da sólo en algunos viñedos de la región, trabaja a baja temperatura, a 13 grados. Estas condiciones son inusuales en regiones de clima cálido y la base para explicar el carácter peculiar de algunos vinos de la zona”, explica la investigadora responsable de este estudio, Eugenia Muñoz Bernal, de la Universidad de Cádiz.
Según los expertos, la fermentación a baja temperatura pone en marcha una serie de rutas bioquímicas en la que participan un conjunto de proteínas de la levadura relacionadas con el aroma.
“A 13 grados, se activa la ruta metabólica de componentes aromáticos. Se trata de una sucesión de reacciones bioquímicas en la que están implicados alcoholes superiores que producen compuestos aromáticos clave como feniletanol y sus acetatos. Sin embargo, esta ruta, no se expresa a temperaturas más elevadas. Por tanto, genera diferencias significativas en los perfiles aromáticos de los vinos”, indica la investigadora.
La levadura Saccharomyces bayanus var uvarum se caracteriza por su baja capacidad para generar alcohol durante la fermentación. Esta peculiaridad influye en el aroma ya que, al producir menos etanol, la levadura ‘redirige’ su actividad a la formación de otros componentes, entre ellos, el acetato, que otorga a los caldos toques aromáticos afrutados y florales.
Otro de los compuestos derivados de este proceso es el glicerol. Esta sustancia viscosa y consistente, muy valorada en el vino, según los científicos, mejora el efecto denominado “lagrimeo del vino”. Éste se produce cuando se gira la copa y el líquido se desliza por el cristal formando gotas. Los expertos señalan que un vino glicérico, es decir, con elevados niveles de glicerol, indica buen nivel de alcohol y cuerpo en los caldos.
Presencia dominante
Para determinar las propiedades de la levadura Saccharomyces bayanus var uvarum, que se recogen en un estudio publicado en la revista Proteomics, los investigadores trabajaron con los vinos de una de las bodegas de la Denominación de Origen Ribera del Duero.
El proyecto, dirigido por el investigador Francisco Javier Fernández Acero, y financiado a través del proyecto europeo PRIME-XS, comenzó con la selección y estudio del comportamiento fermentativo de Saccharomyces bayanus var uvarum, cuya presencia era dominante en una fase concreta del proceso fermentativo, en la etapa media, que se desarrolla conforme disminuye el azúcar inicial y aumenta el alcohol.
Atraídos por estas características, los expertos realizaron una fermentación en el laboratorio. Inocularon la levadura en el mosto fresco de la bodega y la dejaron fermentar a las dos temperaturas ensayadas, a 13 y 25 grados.
Finalizada la fermentación, realizaron un análisis proteómico, es decir, un mapa de las proteínas que se expresan o tienen actividad en cada una de las dos temperaturas. A través de este estudio comparativo, los investigadores detectaron la activación a 13 grados, con respecto a los 25 grados, de los procesos bioquímicos que conducen a la producción de compuestos aromáticos como los mencionados feniletanol y sus acetatos.
Los investigadores indican que el enfoque proteómico es una herramienta ideal para el análisis y selección de levaduras autóctonas, ya que revela la actividad enzimática responsable del aroma. “Esta posibilidad abre la puerta a la elaboración de vinos a la carta. Ya conocemos las características de las poblaciones de esta levadura. Ahora, puedo combinarlas para obtener lo que yo quiero: un vino floral, cítrico o fresco. En cada fase de la fermentación, aplico la que me interesa, según mi objetivo”, señala Muñoz-Bernal.
Para la experta, las levaduras marcan la diferencia entre las bodegas. “En la elaboración del vino, se puede utilizar levaduras autóctonas o comerciales. Estas últimas garantizan la continuidad de la fermentación y la finalización del proceso. No obstante, su uso generalizado disminuye la tipicidad del vino al otorgarle características organolépticas similares. Para obtener un producto diferente hay que tener una levadura diferente”, apostilla.
Referencia bibliográfica:
Muñoz-Bernal, E; Deery, MJ; Rodríguez, ME; Cantoral, JM; Howard, J; Feret, R; Natera, R; Lilley, KS; Fernández-Acero, FJ. "Analysis of temperature-mediated changes in the wine yeast Saccharomyces bayanus var. uvarum. An oenological study of how the protein content influences wine quality". Proteomics 2015, 00, 1–19. http://dx.doi.rog/10.1002/pmic.201500137