En los últimos años se han conseguido avances espectaculares en el desarrollo de los acumuladores de grafeno, cada vez más eficientes y con mayor densidad de energía y potencia, por lo que pronto podrían estar en nuestros dispositivos electrónicos. Investigadores de la Universidad Politécnica de Madrid han revisado las mejoras, desde el mayor rendimiento de los electrodos hasta la cada vez mayor miniaturización.
Entre los avances más importantes de este año de pandemia se encuentran desde la esperanza que han traído las vacunas contra la covid-19, hasta las voces que demandan y aplauden la diversidad racial en la academia, pasando por la inteligencia de las aves y la pintura figurativa más antigua del mundo.
Hasta ahora se necesitaban temperaturas extremadamente bajas para alcanzar la superconductividad, la capacidad de algunos materiales para conducir la corriente eléctrica sin resistencia ni pérdidas de energía, pero investigadores de la Universidad de Rochester (EE UU) lo han logrado a 15 °C con un compuesto de hidrógeno, azufre y carbono, eso sí, a altas presiones. Es un nuevo avance hacia los ansiados sistemas eléctricos de eficiencia perfecta.
Investigadores del Instituto de Ciencia de Materiales de Barcelona han desarrollado un nuevo método de producción de materiales superconductores que es escalable, de bajo coste, respetuoso con el medio ambiente y muy rápido. Las capas superconductoras crecen a una velocidad de hasta 100 nanómetros por segundo.
Los científicos David Thouless, Duncan Haldane y Michael Kosterlitz han obtenido el Premio Nobel de Física de 2016 “por sus descubrimientos teóricos de las fases topológicas de la materia”. La topología es una rama de las matemáticas que permite describir cómo materiales muy finos pueden, paso a paso, experimentar extraños cambios gobernados por leyes cuánticas. Sus aplicaciones se extienden al campo de los superconductores y la electrónica.
Hasta ahora se pensaba que la superconductividad y el magnetismo eran fenómenos excluyentes, pero investigadores del Instituto de Ciencia de Materiales de Barcelona y del Sincrotrón ALBA han encontrado una nueva fuente de magnetismo derivada de defectos puntuales en un tipo de superconductor: los cupratos de alta temperatura. El descubrimiento ayudará a mejorar las propiedades de estos materiales.
Científicos del CSIC y otros centros internacionales han analizado las propiedades de una estructura nanométrica que combina hilos semiconductores con un material superconductor. El trabajo explica por primera vez las propiedades magnéticas de los estados excitados de electrones y huecos y su posible relación con los denominados fermiones de Majorana.
En 1987 se celebró en Nueva York la reunión anual de marzo o March meeting de la Sociedad Americana de Física, uno de los congresos más importantes del siglo XX sobre materiales superconductores. Este es el escenario que la comunicadora Eva Quintanilla (Salamanca, 1979) introduce en su primera novela para contar una historia donde conviven las relaciones humanas con la ciencia.
Una colaboración internacional, en la que participan investigadores de las universidades Autónoma de Madrid, Zaragoza ydel Instituto de Nanociencia de Aragón, ha encontrado un procedimiento que facilita y abarata las condiciones para alcanzar la superconductividad. Esta propiedad física de algunos materiales genera grandes expectativas para la industria y la técnica del futuro.
El transporte de corriente eléctrica en materiales superconductores se puede efectuar sin pérdidas y de una forma más accesible y económica que hasta ahora. Así lo confirma un estudio internacional, en el que han participado investigadores de la Universidad de Zaragoza y el CSIC, y que hoy publica la revista Nature Communications.