Científicos de las universidades de Huelva, Lisboa, Ensenada (Baja California), Columbia (Nueva York) y Massachussets han estudiado por primera vez cómo ha ido evolucionando el archipiélago de Cabo Verde a través del análisis de las especies marinas que lo poblaban. La novedad de la investigación radica en su estudio en islas volcánicas, donde los expertos han observado los avances y retrocesos históricos del nivel del mar.
Los fósiles y las evidencias de su actividad biológica en depósitos marinos de hace 11 millones de años en el archipiélago de Cabo Verde constituyen registros conservados en las rocas que relatan cómo eran las costas de estas islas en el pasado. Investigadores de las universidades de Huelva, Lisboa, Ensenada (Baja California), Columbia (Nueva York) y Massachussets han estudiado por primera vez cómo han ido evolucionando el conjunto de islas de origen volcánico a través del análisis de las especies marinas que las poblaban.
Los científicos han demostrado que, en estas zonas volcánicas, ciertas especies presentaban modelos de comportamiento inducidos por diferentes características de los medios sedimentarios de cada época estudiada.
En el estudio los expertos se han centrado en reconocer las evidencias de la actividad orgánica de diferentes tipos de organismos marinos -como corales, bivalvos, gasterópodos y erizos entre otros- en superficies rocosas que tienen antigüedades comprendidas entre 11 y 1 millón de años.
“Es la primera vez que se estudian estos organismos en las islas atlánticas de origen volcánico, ya se habían analizado en las plataformas continentales. Sin embargo, estas islas nacen con una extensión pequeña y se van construyendo con la actividad volcánica. Esta particularidad hace que la lucha entre las especies y el volcán sea continua”, explica el investigador de la Universidad de Huelva Eduardo Mayoral.
En esa batalla por ganar terreno, la actividad de los organismos del pasado se manifiesta con perforaciones en rocas basálticas perforadas por especies que buscan un domicilio, como los bivalvos o los erizos de mar. En otros casos, se trata de bioconstrucciones que colonizan estas superficies.
“Estas evidencias de su actividad orgánica o de su comportamiento nos han permitido reconocer la existencia de antiguos litorales rocosos en esas zonas y relacionarlos con la evolución tectónica regional y los principales avances o retrocesos del nivel del mar en aquellas épocas”, detalla el investigador.
Con estas pistas tanto biológicas como geológicas, los expertos configuran un escenario de cómo serían esos entornos marinos en el pasado. Además, con esos registros geológicos y la observación del entorno en el presente pueden también esbozar cómo evolucionará la zona.
“Con estudios de este tipo se pueden hacer modelos predictivos. Tenemos evidencias del Mioceno y el Pleistoceno, también conocemos la zona en el presente, el siguiente paso es extrapolarlo al futuro. Aunque cabe el factor sorpresa, porque hablamos de zonas volcánicas caracterizadas por unos comportamientos geológicos muy activos”, advierte.
Estudio en sedimentos blandos
Los investigadores han analizado también la actividad biológica en sedimentos blandos como arenas o arcillas. En estas superficies, han podido deducir comportamiento de organismos excavadores. “En este caso, están condicionados por los episodios de erosión y sedimentación que se produjeron en los fondos marinos”, precisa Mayoral.
Por último, el equipo internacional ha analizado también los depósitos formados por algas coralinas que construyen estructuras de forma esférica denominadas rodolitos y que están asociados a las anteriores superficies. “De esta forma, hemos podido elaborar un modelo general para explicar su conservación y su modo de transporte desde las zonas de plataforma donde vivían hasta la costa”, apostilla el experto.
Referencia bibliográfica:
E. Mayoral, J. Ledesma-Vazquez, B.G. Baarli, A. Santos, R. Ramalho, M. Cachão, C.M. da Silva, M.E. Johnson."Ichnology in oceanic islands; case studies from the Cape Verde Archipelago" Palaeogeography, Palaeoclimatology, Palaeoecology 381–382: 47–66, julio 2013.