Investigadores del instituto ICMAB y la Universidad Autónoma de Barcelona han analizado la respuesta térmica del germanio, un material semiconductor, bajo los efectos de un láser; y en contra de lo que se creía hasta ahora, el calor no se ha disipado por difusión, sino que se ha propagado a través de ondas térmicas por el material. El descubrimiento podría ayudar a mejorar el rendimiento de los dispositivos electrónicos.
En los últimos años se han conseguido avances espectaculares en el desarrollo de los acumuladores de grafeno, cada vez más eficientes y con mayor densidad de energía y potencia, por lo que pronto podrían estar en nuestros dispositivos electrónicos. Investigadores de la Universidad Politécnica de Madrid han revisado las mejoras, desde el mayor rendimiento de los electrodos hasta la cada vez mayor miniaturización.
El científico estadounidense Paul Alivisatos y el alemán Michael Grätzel son los ganadores del Premio Fundación BBVA en la categoría de Ciencias Básicas de este año por el desarrollo de nuevos nanomateriales, con aplicaciones en energía solar y electrónica avanzada.
Hasta ahora se necesitaban temperaturas extremadamente bajas para alcanzar la superconductividad, la capacidad de algunos materiales para conducir la corriente eléctrica sin resistencia ni pérdidas de energía, pero investigadores de la Universidad de Rochester (EE UU) lo han logrado a 15 °C con un compuesto de hidrógeno, azufre y carbono, eso sí, a altas presiones. Es un nuevo avance hacia los ansiados sistemas eléctricos de eficiencia perfecta.
Científicos de Israel, España y otros países han fabricado un dispositivo capaz de medir la corriente eléctrica a través del ADN, lo que ha permitido descubrir cómo la conduce a grandes distancias. El hallazgo abre la puerta a una nueva generación de nanodispositivos electrónicos basados en ADN.
Las partículas cuánticas ultrarrelativistas del grafeno se mueven a velocidades cercanas a las de la luz. Ahora un equipo internacional liderado desde la Universidad Autónoma de Madrid ha logrado por primera vez detener su movimiento con un ‘muro’ impenetrable levantado con ‘ladrillos’ de hidrógeno. El avance puede facilitar la integración de este material en los dispositivos electrónicos.
Investigadores del País Vasco han descubierto el primer aislante topológico con propiedades magnéticas intrínsecas, sin necesidad de aportar átomos magnéticos desde fuera. Está compuesto de manganeso, bismuto y telurio. Este tipo de aislantes tiene un enorme potencial en electrónica porque la corriente circula por su superficie, no por el interior, lo que evita pérdidas de energía.
Investigadores del Instituto Catalán de Nanociencia y Nanotecnología (ICN2) han demostrado que se pueden generar y manipular corrientes de espín, una propiedad de las partículas elementales, en heteroestructuras basadas en grafeno. El avance, logrado a temperatura ambiente, abre la puerta al desarrollo de nuevos dispositivos electrónicos y memorias magnéticas ultracompactas de bajo consumo.
El espín o momento angular de las partículas se pueda usar para transmitir información en materiales tan novedosos como el grafeno, sin olvidar el respeto por el medio ambiente. Esta es la idea que subyace detrás del proyecto europeo SPRING, liderado por el centro vasco CIC nanoGUNE y que acaba de arrancar con el apoyo de 3,5 millones de euros de la Comisión Europea.
Investigadores de la Universidad de Granada y de IBM Research en Zurich (Suiza) han presentado la llamada celda de 'memoria dinámica de acceso aleatorio' más pequeña jamás construida usando un material alternativo al silicio: el arseniuro de indio y galio. Este tipo de memoria RAM se usa en ordenadores, tablets, smartphones, consolas de videjuegos, servidores y todo tipo de aparatos electrónicos.