Un equipo internacional de investigadores, con participación del Donostia International Physics Center, plantea que existen nuevos tipos de partículas cuánticas con propiedades "exóticas e interesantes" en materiales sólidos. El trabajo supone una nueva vía para estudiar los materiales topológicos, un campo que ha modificado la forma de entender los estados de la materia, además de ofrecer aplicaciones en electrónica.
Expertos del sincrotrón ALBA, cerca de Barcelona, han desarrollado un algoritmo que permite controlar la cantidad de electrones y su ubicación dentro del anillo de almacenamiento, de casi 270 metros de circunferencia, situado en esta instalación. El nuevo desarrollo permitirá a los investigadores realizar experimentos con resolución temporal del orden de los nanosegundos.
Investigadores de la Universidad de Sevilla y el Centro Nacional de Aceleradores han utilizado esta instalación para analizar monedas romanas fabricadas con plata y cobre entre el 211 A.C. y el 86 A.C. Los resultados revelan que las monedas con mayor contenido en plata, alrededor del 98% en peso, apenas se ven afectadas por la corrosión.
Investigadores de la Universidad de Sevilla han demostrado mediante experimentos con microondas clásicas que ciertos resultados considerados característicos de partículas cuánticas son, en realidad, comunes a otros sistemas físicos. Según los autores, esto constituye un avance fundamental para identificar cuáles son verdaderamente los principios físicos de la teoría cuántica.
Investigadores de la Universidad de Cantabria y el Institut de Ciència de Materials de Barcelona han publicado un estudio donde informan del enorme cambio que se produce en las propiedades ópticas de las manganitas, unos compuestos con oxígeno y manganeso, cuando se les aplica un campo magnético. El avance podría tener aplicación en futuros componentes electrónicos más pequeños y potentes.
Investigadores de la Universidad Autónoma de la Autónoma han analizado con pinzas ópticas la orientación de partículas nanométricas cilíndricas, denominadas nanorods, cuando son atrapadas. Esta técnica permite atrapar y operar mediante la luz, de manera delicada y precisa, pequeños objetos. Conocer la orientación del objeto atrapado es fundamental para su correcta manipulación y aplicación.
Investigadores del Instituto de Ciencias Fotónicas de Barcelona han desarrollado células solares semitransparentes basadas en nanocristales de plata, bismuto y azufre, elementos no tóxicos y abundantes. Sus resultados ofrecen una eficiencia de conversión de energía del 6,3%, un valor parecido al que consiguen las tecnologías fotovoltaicas de células solares ultrafinas de alto rendimiento.
Investigadores del Laboratorio Nacional Argonne y otros centros de EE UU, coordinados por un científico español, han utilizado por primera vez dos pulsos de rayos X, con ‘colores’ o longitudes de onda diferentes, para analizar procesos moleculares ultrarápidos. Con un pulso han roto una molécula de difluoruro de xenón y con el otro han detectado los atómos de flúor sueltos en menos de 0,000000000000054 segundos. El avance se podría aplicar para estudiar otras moléculas de interés biológico o industrial mientras reaccionan a gran velocidad.
Pocos meses después del gran anuncio de la primera detección de ondas gravitacionales, el observatorio LIGO confirma que ha vuelto a registrar estas ondulaciones del espacio-tiempo. La segunda señal se llama GW151226 y, como la primera, es fruto de la fusión de dos agujeros negros. Investigadores de la Universidad de las Islas Baleares participan en el descubrimiento.