Los experimentos ATLAS y CMS del Gran Colisionador de Hadrones (LHC) han registrado a 13 teraelectronvoltios esta asombrosa característica de la física cuántica que permite a dos partículas, quarks top en este caso, estar vinculadas a distancia. Este fenómeno es la base de aplicaciones como la criptografía y la computación cuánticas.
Investigadores del Instituto de Ciencias Fotónicas (ICFO) han demostrado la transmisión de entrelazamiento entre materia y luz a lo largo de decenas de kilómetros a través de fibra óptica en la capital catalana.
El entrelazamiento y la superposición, como la del gato de Schrödinger, son fenómenos del mundo microscopio que están detrás de los computadores cuánticos, unas máquinas que de momento solo tienen un centenar de cúbits controlables y cuyas versiones definitivas no veremos hasta la próxima década. Nos lo cuenta este experto mundial en física y computación cuánticas.
Investigadores de Caltech, Harvard y otros centros de EE UU han utilizado un sistema de nueve bits cuánticos para simular un estado conocido como agujero de gusano holográfico, un concepto que trata de reconciliar la mecánica cuántica con la relatividad general de Einstein.
El francés Alain Aspect, el estadounidense John Clauser y el austriaco Anton Zeilinger comparten el Nobel de Física de este año por sus experimentos con fotones entrelazados y sus avances en información cuántica. Las herramientas que han desarrollado han sentado las bases de una nueva era en tecnología cuántica.
Hasta ahora se había conseguido por separado el entrelazamiento de memorias cuánticas y el almacenamiento de fotones dentro, pero investigadores del Instituto de Ciencias Fotónicas han conseguido todo a la vez: mantener durante 25 microsegundos un fotón, en estado de superposición cuántica, en dos dispositivos separados a 10 m de distancia. La técnica es compatible con la red de telecomunicaciones actual y ayudará al desarrollo de los repetidores cuánticos.
Investigadores del Instituto de Ciencias Fotónicas (ICFO) han logrado producir un estado entrelazado gigante con 15 billones de átomos. El avance puede ayudar a detectar señales magnéticas extremadamente débiles del cerebro.
Investigadores de la Universidad Autónoma de Barcelona, junto a colegas de la India, han ideado una técnica para cuantificar el grado de coherencia de un estado cuántico de superposición, como el que experimenta el famoso gato de Schrödinger al estar vivo y muerto a la vez. El método se basa en la medición de parámetros experimentales relacionados con la visibilidad del patrón de franjas de interferencia que se produce cuando se superponen los dos estados.
El primer satélite de telecomunicación cuántica del mundo, que desde el espacio investigará tecnologías superseguras “a prueba de ataques cibernéticos” y fenómenos cuánticos, ha despegado desde el centro de lanzamiento de Jiuquan, en el desierto de Gobi (China). La denominación oficial del satélite es QUESS (QUantum Experiments at Space Scale), pero se le conoce popularmente como ‘Mozi’, en honor a un filósofo y científico chino del siglo quinto a.C.
En física cuántica es muy conocida la paradoja del gato de Schrödinger, que está vivo y muerto dentro de una caja, pero ahora científicos de la Universidad de Yale han dado un paso más: han conseguido que uno de estos extraños gatos esté en su estado doble en dos cajas a la vez. Su experimento ha consistido en entrelazar fotones en dos cavidades y podría tener aplicación en computación cuántica.