Investigadores de la Universidad Autónoma de Barcelona, junto a colegas de la India, han ideado una técnica para cuantificar el grado de coherencia de un estado cuántico de superposición, como el que experimenta el famoso gato de Schrödinger al estar vivo y muerto a la vez. El método se basa en la medición de parámetros experimentales relacionados con la visibilidad del patrón de franjas de interferencia que se produce cuando se superponen los dos estados.
El físico alemán Werner K. Heisenberg estableció que es imposible medir con precisión y a la vez dos propiedades de una partícula: si te centras en una medida, se establece un límite en la precisión que puedes conseguir con la otra. Pero ahora investigadores del Instituto de Ciencias Fotónicas han superado los límites establecidos al medir simultáneamente la amplitud y el ángulo del spin de un átomo con una precisión sin precedentes, un avance que también se podría aplicar en escáneres y relojes atómicos.
Un equipo internacional, en el que ha participado un físico de la Universidad Autónoma de Madrid, ha descubierto cómo se conduce el calor en circuitos eléctricos de tamaño atómico. Además de revelar que esta conducción está dominada por efectos cuánticos, el estudio asienta bases teóricas y experimentales para desarrollar una nueva generación de nanodispositivos.
El modelo atómico de Bohr supuso toda una revolución cuando se presentó en 1913 pero, aunque todavía se siga enseñando en las escuelas, hace décadas que quedó obsoleto. Sin embargo, su autor también desarrolló una teoría cuántica mucho más amplia y desconocida, cuyos principios fueron cambiando con el tiempo. Investigadores de la Universidad de Barcelona han analizado ahora la evolución del pensamiento del físico danés, todo un ejemplo de cómo se van forjando las teorías científicas.
El 30 de noviembre, más de 100.000 personas participaron en el BIG Bell Test, un experimento mundial para poner a prueba las leyes de la física cuántica, que han salido reforzadas frente a los postulados de Einstein. Los participantes lograron finalizar más de medio millón de partidas, generando más de 90 millones de bits, una cifra que triplica las expectativas del equipo científico líder del proyecto.
Una docena de laboratorios de todo el mundo, coordinados desde Barcelona por el Instituto de Ciencias Fotónicas, ya están listos para realizar este 30 de noviembre una serie de experimentos relacionados con los misterios del mundo cuántico. Para conseguirlo necesitan la ayuda de al menos 30.000 personas, cuya tarea será generar bits o secuencias de ceros y unos de la forma más aleatoria posible. Cualquiera puede participar en esta iniciativa a través de la web thebigbelltest.org.
¿Cambian los átomos cuando los miramos? ¿Pueden hablar entre ellos para decirse que los estamos observando? Un nuevo proyecto tratará de responder a estas preguntas con la ayuda de todos los ciudadanos dispuestos a generar ceros y unos de forma aleatoria en el Gran Test de Bell, un proyecto mundial coordinado desde el Instituto de Ciencias Fotónicas, en Barcelona, para realizar experimentos de física cuántica en diferentes laboratorios de todo el mundo el próximo 30 de noviembre.
El primer satélite de telecomunicación cuántica del mundo, que desde el espacio investigará tecnologías superseguras “a prueba de ataques cibernéticos” y fenómenos cuánticos, ha despegado desde el centro de lanzamiento de Jiuquan, en el desierto de Gobi (China). La denominación oficial del satélite es QUESS (QUantum Experiments at Space Scale), pero se le conoce popularmente como ‘Mozi’, en honor a un filósofo y científico chino del siglo quinto a.C.
En los años 70 Stephen Hawking teorizó que los agujeros negros no son completamente negros, ya que pueden emitir una radiación que hoy lleva su nombre. Ahora un físico israelí ha recreado un agujero negro sónico en el laboratorio para aportar la mejor prueba hasta la fecha de la existencia de esa radiación y del entrelazamiento cuántico que se produce entre dos partículas, una que queda dentro y otra fuera del agujero.