Investigadores de cuatro universidades españolas han demostrado que los procesos de enfriamiento y calentamiento no siempre siguen el sentido común: en dos sistemas idénticos se puede llegar a enfriar antes el más caliente, e incluso hacer que se enfríe más rápido con un golpe de calor. Entre los posibles campos de aplicación del hallazgo figura la computación cuántica.
Investigadores del instituto ICFO y otros centros internacionales han logrado, por primera vez, la llamada polarización de valles en un material grueso centrosimétrico. Este avance tan específico podría ayudar en el procesamiento de información y la computación cuántica.
Investigadores del Instituto de Ciencias Fotónicas (ICFO) han construido un microscopio capaz de observar átomos individuales en un gas cuántico de estroncio. Su nombre: QUIONE, como la diosa griega de la nieve.
El entrelazamiento y la superposición, como la del gato de Schrödinger, son fenómenos del mundo microscopio que están detrás de los computadores cuánticos, unas máquinas que de momento solo tienen un centenar de cúbits controlables y cuyas versiones definitivas no veremos hasta la próxima década. Nos lo cuenta este experto mundial en física y computación cuánticas.
Dentro de los actos de la Presidencia española del Consejo de la UE, los ministerios de Ciencia, Innovación y Universidades y el de Transformación Digital han organizado la conferencia ‘Quantum Technologies In Europe’ para abordar los retos de esta tecnología en el ámbito europeo. Dos premios Nobel y el profesor Ignacio Cirac han impartido clases magistrales sobre el mundo cuántico.
Investigadores del Instituto Tecnológico de Massachusetts (EE UU) han demostrado que es posible ejercer el control sobre las fluctuaciones cuánticas en un espacio aparentemente vacío. El avance abre la puerta a la computación probabilística, que aprovecha la aleatoriedad intrínseca de ciertos procesos para realizar cálculos y ofrecer varios resultados posibles.
Los ordenadores cuánticos tienen el potencial de revolucionar multitud de campos, pero están muy limitados por el ruido. Ahora, investigadores de la Universidad Autónoma de Madrid proponen usarlo para mejorar los resultados de algoritmos cuánticos, abriendo así nuevas posibilidades en el desarrollo de esta nueva computación.
Investigadores de Suiza y España han realizado el llamado ‘experimento de Bell libre de loopholes’ con circuitos superconductores, la base de los ordenadores cuánticos actuales más avanzados. Mediante generadores de números aleatorios superrápidos, han logrado que objetos situados en diferentes lugares se comporten como si fueran un solo sistema.
Un equipo de científicos de varios centros españoles ha descubierto partículas físicas que se hacen pasar por las conocidas como partículas de Majorana. Según la teoría, dichos elementos son la llave de una computación cuántica más robusta que la actual, debido a su resiliencia frente a perturbaciones externas.
Investigadores de la empresa canadiense Xanadu han desarrollado un sistema capaz de resolver un problema computacional llamado muestreo de bosones en un tiempo récord. Tarda 36 microsegundos en realizar una tarea que llevaría más de 9.000 años a un superordenador clásico.